Inversion of Integral Series Enumerating Planar Trees
Séminaire lotharingien de combinatoire, Tome 53 (2005-2006)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We consider an integral series f(X,t) which depends on the choice of a set X of labelled planar rooted trees. We prove that its inverse with respect to composition is of the form f(Z,t) for another set Z of trees, deduced from X. The proof is self-contained, though inspired by the Koszul duality theory of quadratic operads. In the same vein we give a conceptual proof for the formulas giving the coefficients of the inverse with respect to composition of the generic formal power series.
@article{SLC_2005-2006_53_a3,
author = {Jean-Louis Loday},
title = {Inversion of {Integral} {Series} {Enumerating} {Planar} {Trees}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {53},
year = {2005-2006},
url = {http://geodesic.mathdoc.fr/item/SLC_2005-2006_53_a3/}
}
Jean-Louis Loday. Inversion of Integral Series Enumerating Planar Trees. Séminaire lotharingien de combinatoire, Tome 53 (2005-2006). http://geodesic.mathdoc.fr/item/SLC_2005-2006_53_a3/