Computing Powers of Two Generalizations of the Logarithm
Séminaire lotharingien de combinatoire, Tome 53 (2005-2006)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We prove multiple-series representations for positive integer powers of the series
The results generalize a known formula for powers of the series for the ordinary logarithm -log(1-z) = L(z;0).
\begin{displaymath} L(z;\alpha)=\sum_{n=1}^\infty\frac{z^n}{n+\alpha}, \;\; \ver... ...frac{z^nq^n}{1-q^n}, \;\; \vert z\vert\le1, \; \vert q\vert<1. \end{displaymath}
The results generalize a known formula for powers of the series for the ordinary logarithm -log(1-z) = L(z;0).
@article{SLC_2005-2006_53_a2,
author = {Wadim Zudilin},
title = {Computing {Powers} of {Two} {Generalizations} of the {Logarithm}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {53},
year = {2005-2006},
url = {http://geodesic.mathdoc.fr/item/SLC_2005-2006_53_a2/}
}
Wadim Zudilin. Computing Powers of Two Generalizations of the Logarithm. Séminaire lotharingien de combinatoire, Tome 53 (2005-2006). http://geodesic.mathdoc.fr/item/SLC_2005-2006_53_a2/