On the Number of Matroids of a Finite Set
Séminaire lotharingien de combinatoire, Tome 51 (2004-2005)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
In this paper we highlight some enumerative results concerning matroids of low rank and prove the tail-ends of various sequences involving the number of matroids on a finite set to be log-convex. We give a recursion for a new, slightly improved, lower bound on the number of rank-r matroids on n elements when n=2m-1. We also prove an adjacent result showing the point-lines-planes conjecture to be true if and only if it is true for a special sub-collection of matroids. Two new tables are also presented, giving the number of paving matroids on at most eight elements.
@article{SLC_2004-2005_51_a6,
author = {Mark Dukes},
title = {On the {Number} of {Matroids} of a {Finite} {Set}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {51},
year = {2004-2005},
url = {http://geodesic.mathdoc.fr/item/SLC_2004-2005_51_a6/}
}
Mark Dukes. On the Number of Matroids of a Finite Set. Séminaire lotharingien de combinatoire, Tome 51 (2004-2005). http://geodesic.mathdoc.fr/item/SLC_2004-2005_51_a6/