The 2n-1 Factor for Multi-Dimensional Lattice Paths with Diagonal Steps
Séminaire lotharingien de combinatoire, Tome 51 (2004-2005)
In Zd, let D(n) denote the set of lattice paths from the origin to (n,n,...,n) that use nonzero steps of the form (x1,x2, ..., xd) where xi is in { 0,1} for 1 = i = d. Let S(n) denote the set of lattice paths from the origin to (n,n,...,n) that use nonzero steps of the form (x1,x2, ..., xd) where xi >= 0 for 1 = i = d. For d=3, we prove bijectively that the cardinalities satisfy |S(n)| = 2n-1 |D(n)| for n= 1. One can extend our method to any dimension and obtain the same identity. We find an explicit formula for |D(n)| when d=3.
@article{SLC_2004-2005_51_a2,
author = {Enrica Duchi and Robert A. Sulanke},
title = {The 2n-1 {Factor} for {Multi-Dimensional} {Lattice} {Paths} with {Diagonal} {Steps}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2004-2005},
volume = {51},
url = {http://geodesic.mathdoc.fr/item/SLC_2004-2005_51_a2/}
}
Enrica Duchi; Robert A. Sulanke. The 2n-1 Factor for Multi-Dimensional Lattice Paths with Diagonal Steps. Séminaire lotharingien de combinatoire, Tome 51 (2004-2005). http://geodesic.mathdoc.fr/item/SLC_2004-2005_51_a2/