The 2n-1 Factor for Multi-Dimensional Lattice Paths with Diagonal Steps
Séminaire lotharingien de combinatoire, Tome 51 (2004-2005)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
In Zd, let D(n) denote the set of lattice paths from the origin to (n,n,...,n) that use nonzero steps of the form (x1,x2, ..., xd) where xi is in { 0,1} for 1 = i = d. Let S(n) denote the set of lattice paths from the origin to (n,n,...,n) that use nonzero steps of the form (x1,x2, ..., xd) where xi >= 0 for 1 = i = d. For d=3, we prove bijectively that the cardinalities satisfy |S(n)| = 2n-1 |D(n)| for n= 1. One can extend our method to any dimension and obtain the same identity. We find an explicit formula for |D(n)| when d=3.
@article{SLC_2004-2005_51_a2,
author = {Enrica Duchi and Robert A. Sulanke},
title = {The 2n-1 {Factor} for {Multi-Dimensional} {Lattice} {Paths} with {Diagonal} {Steps}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {51},
year = {2004-2005},
url = {http://geodesic.mathdoc.fr/item/SLC_2004-2005_51_a2/}
}
Enrica Duchi; Robert A. Sulanke. The 2n-1 Factor for Multi-Dimensional Lattice Paths with Diagonal Steps. Séminaire lotharingien de combinatoire, Tome 51 (2004-2005). http://geodesic.mathdoc.fr/item/SLC_2004-2005_51_a2/