SCHUBERT GROTHENDIECK: Un bilan bidécennal
Séminaire lotharingien de combinatoire, Tome 50 (2003-2005)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We give a dozen formulas concerning Schubert and Grothendieck polynomials, and their interrelations, half of them being new, and most of them interesting. In particular, we describe explicitly the decomposition of Schubert polynomials as positive sums of Grothendieck polynomials, and we show that non-commutative Schubert polynomials are obtained by reading the columns of a two-dimensional Cauchy kernel. A six pages summary in English has been added.

@article{SLC_2003-2005_50_a8,
     author = {Alain Lascoux},
     title = {SCHUBERT & {GROTHENDIECK:} {Un} bilan bid\'ecennal},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {50},
     year = {2003-2005},
     url = {http://geodesic.mathdoc.fr/item/SLC_2003-2005_50_a8/}
}
TY  - JOUR
AU  - Alain Lascoux
TI  - SCHUBERT & GROTHENDIECK: Un bilan bidécennal
JO  - Séminaire lotharingien de combinatoire
PY  - 2003-2005
VL  - 50
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2003-2005_50_a8/
ID  - SLC_2003-2005_50_a8
ER  - 
%0 Journal Article
%A Alain Lascoux
%T SCHUBERT & GROTHENDIECK: Un bilan bidécennal
%J Séminaire lotharingien de combinatoire
%D 2003-2005
%V 50
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2003-2005_50_a8/
%F SLC_2003-2005_50_a8
Alain Lascoux. SCHUBERT & GROTHENDIECK: Un bilan bidécennal. Séminaire lotharingien de combinatoire, Tome 50 (2003-2005). http://geodesic.mathdoc.fr/item/SLC_2003-2005_50_a8/