The Kernel Method: A Collection of Examples
    
    
  
  
  
      
      
      
        
Séminaire lotharingien de combinatoire, Tome 50 (2003-2005)
    
  
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
            
              The kernel method has recently become quite popular. Roughy speaking, in certain cases one obtains for a multivariate generating function a functional equation. For certain couplings of the variables, the denominator vanishes, but since one knows a priori that a power series expansion exists, one concludes that the numerator must also vanish. This is sufficient to compute the generating function, at least at special values, and subsequently in general. 
        
       We present a collection of examples where this technique works. All of them have a certain random walk flavour. 
 
@article{SLC_2003-2005_50_a5,
     author = {Helmut Prodinger},
     title = {The {Kernel} {Method:} {A} {Collection} of {Examples}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {50},
     year = {2003-2005},
     url = {http://geodesic.mathdoc.fr/item/SLC_2003-2005_50_a5/}
}
                      
                      
                    Helmut Prodinger. The Kernel Method: A Collection of Examples. Séminaire lotharingien de combinatoire, Tome 50 (2003-2005). http://geodesic.mathdoc.fr/item/SLC_2003-2005_50_a5/