The Kernel Method: A Collection of Examples
Séminaire lotharingien de combinatoire, Tome 50 (2003-2005)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

The kernel method has recently become quite popular. Roughy speaking, in certain cases one obtains for a multivariate generating function a functional equation. For certain couplings of the variables, the denominator vanishes, but since one knows a priori that a power series expansion exists, one concludes that the numerator must also vanish. This is sufficient to compute the generating function, at least at special values, and subsequently in general.

We present a collection of examples where this technique works. All of them have a certain random walk flavour.

@article{SLC_2003-2005_50_a5,
     author = {Helmut Prodinger},
     title = {The {Kernel} {Method:} {A} {Collection} of {Examples}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {50},
     year = {2003-2005},
     url = {http://geodesic.mathdoc.fr/item/SLC_2003-2005_50_a5/}
}
TY  - JOUR
AU  - Helmut Prodinger
TI  - The Kernel Method: A Collection of Examples
JO  - Séminaire lotharingien de combinatoire
PY  - 2003-2005
VL  - 50
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2003-2005_50_a5/
ID  - SLC_2003-2005_50_a5
ER  - 
%0 Journal Article
%A Helmut Prodinger
%T The Kernel Method: A Collection of Examples
%J Séminaire lotharingien de combinatoire
%D 2003-2005
%V 50
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2003-2005_50_a5/
%F SLC_2003-2005_50_a5
Helmut Prodinger. The Kernel Method: A Collection of Examples. Séminaire lotharingien de combinatoire, Tome 50 (2003-2005). http://geodesic.mathdoc.fr/item/SLC_2003-2005_50_a5/