Feynman Diagrams in Algebraic Combinatorics
Séminaire lotharingien de combinatoire, Tome 49 (2002-2004)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We show, in great detail, how the perturbative tools of quantum field theory allow one to rigorously obtain: a ``categorified'' Faà di Bruno type formula for multiple composition, an explicit formula for reversion and a proof of Lagrange-Good inversion, all in the setting of multivariable power series. We took great pains to offer a self-contained presentation that, we hope, will provide any mathematician who wishes, an easy access to the wonderland of quantum field theory.
@article{SLC_2002-2004_49_a2,
author = {Abdelmalek Abdesselam},
title = {Feynman {Diagrams} in {Algebraic} {Combinatorics}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {49},
year = {2002-2004},
url = {http://geodesic.mathdoc.fr/item/SLC_2002-2004_49_a2/}
}
Abdelmalek Abdesselam. Feynman Diagrams in Algebraic Combinatorics. Séminaire lotharingien de combinatoire, Tome 49 (2002-2004). http://geodesic.mathdoc.fr/item/SLC_2002-2004_49_a2/