Kazhdan-Lusztig Polynomials: History, Problems, and Combinatorial Invariance
Séminaire lotharingien de combinatoire, Tome 49 (2002-2004) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

This is an expository paper on Kazhdan-Lusztig polynomials, and particularly on the recent result concerning their combinatorial invariance, based on my lectures at the 49th Seminaire Lotharingien de Combinatoire. The paper consists of three parts entitled: History; Problems; and Combinatorial Invariance. In the first one we give the main definitions and facts about the Bruhat order and graph, and about the Kazhdan-Lusztig and R-polynomials. In the second one we present, as a sample, two results, one on the R-polynomials and one on the Kazhdan-Lusztig polynomials, which in the author's opinion illustrate very well the rich combinatorics that hides in these polynomials. Finally, in the third part, we explain the recent result that the Kazhdan-Lusztig and R-polynomials depend only on a certain poset, and mention some open problems and conjectures related to this.

@article{SLC_2002-2004_49_a1,
     author = {Francesco Brenti},
     title = {Kazhdan-Lusztig {Polynomials:} {History,} {Problems,} and {Combinatorial} {Invariance}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {2002-2004},
     volume = {49},
     url = {http://geodesic.mathdoc.fr/item/SLC_2002-2004_49_a1/}
}
TY  - JOUR
AU  - Francesco Brenti
TI  - Kazhdan-Lusztig Polynomials: History, Problems, and Combinatorial Invariance
JO  - Séminaire lotharingien de combinatoire
PY  - 2002-2004
VL  - 49
UR  - http://geodesic.mathdoc.fr/item/SLC_2002-2004_49_a1/
ID  - SLC_2002-2004_49_a1
ER  - 
%0 Journal Article
%A Francesco Brenti
%T Kazhdan-Lusztig Polynomials: History, Problems, and Combinatorial Invariance
%J Séminaire lotharingien de combinatoire
%D 2002-2004
%V 49
%U http://geodesic.mathdoc.fr/item/SLC_2002-2004_49_a1/
%F SLC_2002-2004_49_a1
Francesco Brenti. Kazhdan-Lusztig Polynomials: History, Problems, and Combinatorial Invariance. Séminaire lotharingien de combinatoire, Tome 49 (2002-2004). http://geodesic.mathdoc.fr/item/SLC_2002-2004_49_a1/