2kn - Binomial(2k+1,2)
Séminaire lotharingien de combinatoire, Tome 47 (2001-2002)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
It is shown that every cyclic split system S defined on an n-set with #S > 2kn - Binomial(2k+1, 2) for some k = (n-1)/2 always contains a subset of k+1 pairwise incompatible splits provided one has min(k,n - (2k+1)) = 3. In addition, some related old and new conjectures are also discussed.
@article{SLC_2001-2002_47_a1,
author = {Andreas Dress and M. Klucznik and Jack Koolen and Vincent Moulton},
title = {2kn - {Binomial(2k+1,2)}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {47},
year = {2001-2002},
url = {http://geodesic.mathdoc.fr/item/SLC_2001-2002_47_a1/}
}
Andreas Dress; M. Klucznik; Jack Koolen; Vincent Moulton. 2kn - Binomial(2k+1,2). Séminaire lotharingien de combinatoire, Tome 47 (2001-2002). http://geodesic.mathdoc.fr/item/SLC_2001-2002_47_a1/