Random Mappings, Forests, and Subsets Associated with Abel-Cayley-Hurwitz Multinomial Expansions
Séminaire lotharingien de combinatoire, Tome 46 (2001-2002)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Various random combinatorial objects, such as mappings, trees, forests, and subsets of a finite set, are constructed with probability distributions related to the binomial and multinomial expansions due to Abel, Cayley and Hurwitz. Relations between these combinatorial objects, such as Joyal's bijection between mappings and marked rooted trees, have interesting probabilistic interpretations, and applications to the asymptotic structure of large random trees and mappings. An extension of Hurwitz's binomial formula is associated with the probability distribution of the random set of vertices of a fringe subtree in a random forest whose distribution is defined by terms of a multinomial expansion over rooted labeled forests.

@article{SLC_2001-2002_46_a7,
     author = {Jim Pitman},
     title = {Random {Mappings,} {Forests,} and {Subsets} {Associated} with {Abel-Cayley-Hurwitz} {Multinomial} {Expansions}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {46},
     year = {2001-2002},
     url = {http://geodesic.mathdoc.fr/item/SLC_2001-2002_46_a7/}
}
TY  - JOUR
AU  - Jim Pitman
TI  - Random Mappings, Forests, and Subsets Associated with Abel-Cayley-Hurwitz Multinomial Expansions
JO  - Séminaire lotharingien de combinatoire
PY  - 2001-2002
VL  - 46
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2001-2002_46_a7/
ID  - SLC_2001-2002_46_a7
ER  - 
%0 Journal Article
%A Jim Pitman
%T Random Mappings, Forests, and Subsets Associated with Abel-Cayley-Hurwitz Multinomial Expansions
%J Séminaire lotharingien de combinatoire
%D 2001-2002
%V 46
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2001-2002_46_a7/
%F SLC_2001-2002_46_a7
Jim Pitman. Random Mappings, Forests, and Subsets Associated with Abel-Cayley-Hurwitz Multinomial Expansions. Séminaire lotharingien de combinatoire, Tome 46 (2001-2002). http://geodesic.mathdoc.fr/item/SLC_2001-2002_46_a7/