Pattern Avoidance in Coloured Permutations
Séminaire lotharingien de combinatoire, Tome 46 (2001-2002)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Let Sn be the symmetric group, Cr the cyclic group of order r, and let Sn(r) be the wreath product of Sn and Cr; which is the set of all coloured permutations on the symbols 1,2,...,n with colours 1,2,...,r, which is the analogous of the symmetric group when r=1, and the hyperoctahedral group when r=2. We prove, for every 2-letter coloured pattern \phi in S2(r), that the number of \phi-avoiding coloured permutations in Sn(r) is given by the formula \sum_{j=0}^n j! (r-1)^j {\binom n j}^2. Also we prove that the number of Wilf classes of restricted coloured permutations by two patterns with r colours in S2(r) is one for r=1, is four for r=2, and is six for r>=3.
@article{SLC_2001-2002_46_a6,
author = {Toufik Mansour},
title = {Pattern {Avoidance} in {Coloured} {Permutations}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {46},
year = {2001-2002},
url = {http://geodesic.mathdoc.fr/item/SLC_2001-2002_46_a6/}
}
Toufik Mansour. Pattern Avoidance in Coloured Permutations. Séminaire lotharingien de combinatoire, Tome 46 (2001-2002). http://geodesic.mathdoc.fr/item/SLC_2001-2002_46_a6/