Hook Length Formula and Geometric Combinatorics
Séminaire lotharingien de combinatoire, Tome 46 (2001-2002)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We present here a transparent proof of the hook length formula. The formula is reduced to an equality between the number of integer point in certain polytopes. The latter is established by an explicit continuous volume-preserving piecewise linear map.

@article{SLC_2001-2002_46_a5,
     author = {Igor Pak},
     title = {Hook {Length} {Formula} and {Geometric} {Combinatorics}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {46},
     year = {2001-2002},
     url = {http://geodesic.mathdoc.fr/item/SLC_2001-2002_46_a5/}
}
TY  - JOUR
AU  - Igor Pak
TI  - Hook Length Formula and Geometric Combinatorics
JO  - Séminaire lotharingien de combinatoire
PY  - 2001-2002
VL  - 46
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2001-2002_46_a5/
ID  - SLC_2001-2002_46_a5
ER  - 
%0 Journal Article
%A Igor Pak
%T Hook Length Formula and Geometric Combinatorics
%J Séminaire lotharingien de combinatoire
%D 2001-2002
%V 46
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2001-2002_46_a5/
%F SLC_2001-2002_46_a5
Igor Pak. Hook Length Formula and Geometric Combinatorics. Séminaire lotharingien de combinatoire, Tome 46 (2001-2002). http://geodesic.mathdoc.fr/item/SLC_2001-2002_46_a5/