Random Young Tableaux and Combinatorial Identities
Séminaire lotharingien de combinatoire, Tome 46 (2001-2002)
We derive new combinatorial identities which may be viewed as multivariate analogs of summation formulas for hypergeometric series. As in the previous paper by one of us [Trans. Amer. Math. Soc. 353 (2001), 4371-4404], we start with probability distributions on the space of the infinite Young tableaux. Then we calculate the probability that the entry of a random tableau at a given box equals n=1,2,... Summing these probabilities over n and equating the result to 1 we get a nontrivial identity. Our choice for the initial distributions is motivated by the recent work on harmonic analysis on the infinite symmetric group and related topics.
@article{SLC_2001-2002_46_a4,
author = {Grigori Olshanski and Amitai Regev},
title = {Random {Young} {Tableaux} and {Combinatorial} {Identities}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {2001-2002},
volume = {46},
url = {http://geodesic.mathdoc.fr/item/SLC_2001-2002_46_a4/}
}
Grigori Olshanski; Amitai Regev. Random Young Tableaux and Combinatorial Identities. Séminaire lotharingien de combinatoire, Tome 46 (2001-2002). http://geodesic.mathdoc.fr/item/SLC_2001-2002_46_a4/