An Eulerian Partner for Inversions
Séminaire lotharingien de combinatoire, Tome 46 (2001-2002)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
A number of researchers studying permutation statistics on the symmetric group Sn have considered pairs (x, Y), where x is an Eulerian statistic and Y is a Mahonian statistic. Of special interest are pairs such as (des, maj), whose joint distribution on Sn is given by Carlitz's q-Eulerian polynomials. We present a natural Eulerian statistic stc such that the pair (stc, inv) is equally distributed with (des, maj) on Sn, and provide a simple bijective proof of this fact. This result solves the problem of finding an Eulerian partner for the Mahonian statistic inv. We conjecture several properties of the joint distributions of stc with the statistics des and maj.
@article{SLC_2001-2002_46_a3,
author = {Mark Skandera},
title = {An {Eulerian} {Partner} for {Inversions}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {46},
year = {2001-2002},
url = {http://geodesic.mathdoc.fr/item/SLC_2001-2002_46_a3/}
}
Mark Skandera. An Eulerian Partner for Inversions. Séminaire lotharingien de combinatoire, Tome 46 (2001-2002). http://geodesic.mathdoc.fr/item/SLC_2001-2002_46_a3/