Orthogonal Polynomials Associated with Root Systems
Séminaire lotharingien de combinatoire, Tome 45 (2000-2001)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Let R and S be two irreducible root systems spanning the same vector space and having the same Weyl group W, such that S (but not necessarily R) is reduced. For each such pair (R,S) we construct a family of W-invariant orthogonal polynomials in several variables, whose coefficients are rational functions of parameters q,t1,t2,...,tr, where r (= 1, 2 or 3) is the number of W-orbits in R. For particular values of these parameters, these polynomials give the values of zonal spherical functions on real and p-adic symmetric spaces. Also when R=S is of type An, they conincide with the symmetric polynomials described in I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford University Press (1995), Chapter VI.

Foreword

The text of the paper is that of my 1987 preprint with the above title. It is now in many ways a period piece, and I have thought it best to reproduce it unchanged. I am grateful to Tom Koornwinder and Christian Krattenthaler for arranging for its publication in the Séminaire Lotharingien de Combinatoire.

I should add that the subject has advanced considerably in the intervening years. In particular, the conjectures in Section 12 are now theorems. For a sketch of these later developments the reader may refer to my booklet "Symmetric functions and orthogonal polynomials", University Lecture Series Vol. 12, American Mathematical Society (1998), and the references to the literature given there.

Ian G. Macdonald, November 2000

@article{SLC_2000-2001_45_a0,
     author = {Ian G. Macdonald},
     title = {Orthogonal {Polynomials} {Associated} with {Root} {Systems}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {45},
     year = {2000-2001},
     url = {http://geodesic.mathdoc.fr/item/SLC_2000-2001_45_a0/}
}
TY  - JOUR
AU  - Ian G. Macdonald
TI  - Orthogonal Polynomials Associated with Root Systems
JO  - Séminaire lotharingien de combinatoire
PY  - 2000-2001
VL  - 45
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2000-2001_45_a0/
ID  - SLC_2000-2001_45_a0
ER  - 
%0 Journal Article
%A Ian G. Macdonald
%T Orthogonal Polynomials Associated with Root Systems
%J Séminaire lotharingien de combinatoire
%D 2000-2001
%V 45
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2000-2001_45_a0/
%F SLC_2000-2001_45_a0
Ian G. Macdonald. Orthogonal Polynomials Associated with Root Systems. Séminaire lotharingien de combinatoire, Tome 45 (2000-2001). http://geodesic.mathdoc.fr/item/SLC_2000-2001_45_a0/