Mathemagics
Séminaire lotharingien de combinatoire, Tome 44 (2000-2001)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

The implicit philosophical belief of the working mathematician is today the Hilbert-Bourbaki formalism. Ideally, one works within a closed system: the basic principles are clearly enunciated once for all, including (that is an addition of twentieth century science) the formal rules of logical reasoning clothed in mathematical form.

My thesis is: there is another way of doing mathematics, equally successful, and the two methods should supplement each other and not fight. This other way bears various names: symbolic method, operational calculus, operator theory ...

In this article I make a case for this "other method" of doing mathematics, by discussing several instances where it has led to, respectively will (hopefully) lead to, fruitful insights and developments.

@article{SLC_2000-2001_44_a3,
     author = {Pierre Cartier},
     title = {Mathemagics},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {44},
     year = {2000-2001},
     url = {http://geodesic.mathdoc.fr/item/SLC_2000-2001_44_a3/}
}
TY  - JOUR
AU  - Pierre Cartier
TI  - Mathemagics
JO  - Séminaire lotharingien de combinatoire
PY  - 2000-2001
VL  - 44
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_2000-2001_44_a3/
ID  - SLC_2000-2001_44_a3
ER  - 
%0 Journal Article
%A Pierre Cartier
%T Mathemagics
%J Séminaire lotharingien de combinatoire
%D 2000-2001
%V 44
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_2000-2001_44_a3/
%F SLC_2000-2001_44_a3
Pierre Cartier. Mathemagics. Séminaire lotharingien de combinatoire, Tome 44 (2000-2001). http://geodesic.mathdoc.fr/item/SLC_2000-2001_44_a3/