Schur's Determinants and Partition Theorems
Séminaire lotharingien de combinatoire, Tome 44 (2000-2001)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Garrett, Ismail, and Stanton gave a general formula that contains the Rogers-Ramanujan identities as special cases. The theory of associated orthogonal polynomials is then used to explain determinants that Schur introduced in 1917 and show that the Rogers-Ramanujan identities imply the Garrett, Ismail, and Stanton seemingly more general formula. Using a result of Slater a continued fraction is explicitly evaluated.
@article{SLC_2000-2001_44_a0,
author = {Mourad E. H. Ismail and Helmut Prodinger and Dennis Stanton},
title = {Schur's {Determinants} and {Partition} {Theorems}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {44},
year = {2000-2001},
url = {http://geodesic.mathdoc.fr/item/SLC_2000-2001_44_a0/}
}
Mourad E. H. Ismail; Helmut Prodinger; Dennis Stanton. Schur's Determinants and Partition Theorems. Séminaire lotharingien de combinatoire, Tome 44 (2000-2001). http://geodesic.mathdoc.fr/item/SLC_2000-2001_44_a0/