A Macsyma Implementation of Zeilberger's Fast Algorithm
Séminaire lotharingien de combinatoire, Tome 43 (1999-2000)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We present the first implementation within the Macsyma computer algebra system of Zeilberger's fast algorithm for the definite summation problem for a very large class of sequences; i.e., given a hypergeometric sequence F(n,k), we want to represent f(n)=sum_{k=0}^{n} F(n,k) in a "simpler" form. We do this by finding a linear recurrence for the summand F(n,k), from which we can obtain a homogeneous k-free recurrence for f(n). The solution of this recurrence is left as a post-processing, and it will give the "simpler" form we were looking for.

Zeilberger's fast algorithm exploits a specialized version of Gosper's algorithm for the indefinite summation problem; i.e., given a hypergeometric sequence t(k), the problem of finding another sequence T(k) such that t(k)=\Deltak T(k)=T(k+1)- T(k). The implementation of this algorithm has been carried out in Macsyma, and its details are also briefly described in this paper.

@article{SLC_1999-2000_43_a8,
     author = {Fabrizio Caruso},
     title = {A {Macsyma} {Implementation} of {Zeilberger's} {Fast} {Algorithm}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {43},
     year = {1999-2000},
     url = {http://geodesic.mathdoc.fr/item/SLC_1999-2000_43_a8/}
}
TY  - JOUR
AU  - Fabrizio Caruso
TI  - A Macsyma Implementation of Zeilberger's Fast Algorithm
JO  - Séminaire lotharingien de combinatoire
PY  - 1999-2000
VL  - 43
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1999-2000_43_a8/
ID  - SLC_1999-2000_43_a8
ER  - 
%0 Journal Article
%A Fabrizio Caruso
%T A Macsyma Implementation of Zeilberger's Fast Algorithm
%J Séminaire lotharingien de combinatoire
%D 1999-2000
%V 43
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1999-2000_43_a8/
%F SLC_1999-2000_43_a8
Fabrizio Caruso. A Macsyma Implementation of Zeilberger's Fast Algorithm. Séminaire lotharingien de combinatoire, Tome 43 (1999-2000). http://geodesic.mathdoc.fr/item/SLC_1999-2000_43_a8/