An analogue of Jeu de taquin for Littelmann's crystal paths
Séminaire lotharingien de combinatoire, Tome 41 (1998)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
Littelmann has given a combinatorial model for the characters of representations of semisimple Lie algebras, in terms of certain paths traced in the space of (rational) weights. From it, a description of the decomposition of tensor products can be derived that generalises the Littlewood-Richardson rule (the latter is valid in type A(n) only). We present a new combinatorial construction that expresses in a bijective manner the symmetry of the tensor product in this path model. In type A(n), where there is a correspondence between paths and skew tableaux, this construction is equivalent to Schützenberger's jeu de taquin; in the general case the construction retains its most crucial properties of symmetry and confluence.
@article{SLC_1998_41_a1,
author = {Marc A. A. van Leeuwen},
title = {An analogue of {Jeu} de taquin for {Littelmann's} crystal paths},
journal = {S\'eminaire lotharingien de combinatoire},
year = {1998},
volume = {41},
url = {http://geodesic.mathdoc.fr/item/SLC_1998_41_a1/}
}
Marc A. A. van Leeuwen. An analogue of Jeu de taquin for Littelmann's crystal paths. Séminaire lotharingien de combinatoire, Tome 41 (1998). http://geodesic.mathdoc.fr/item/SLC_1998_41_a1/