MacMahon's Partition Analysis IV: Hypergeometric Multisums
Séminaire lotharingien de combinatoire, Tome 42 (1998-1999) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

In his famous book ``Combinatory Analysis" MacMahon introduced Partition Analysis as a computational method for solving problems in connection with linear homogeneous diophantine inequalities and equations, respectively. The object of this paper is to introduce an entirely new application domain for MacMahon's operator technique. Namely, we show that Partition Analysis can be also used for proving hypergeometric multisum identities. Our examples range from combinatorial sums involving binomial coefficients, harmonic and derangement numbers to multisums which arise in physics and which are related to the Knuth-Bender theorem.

@article{SLC_1998-1999_42_a9,
     author = {George E. Andrews and Peter Paule},
     title = {MacMahon's {Partition} {Analysis} {IV:} {Hypergeometric} {Multisums}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {1998-1999},
     volume = {42},
     url = {http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a9/}
}
TY  - JOUR
AU  - George E. Andrews
AU  - Peter Paule
TI  - MacMahon's Partition Analysis IV: Hypergeometric Multisums
JO  - Séminaire lotharingien de combinatoire
PY  - 1998-1999
VL  - 42
UR  - http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a9/
ID  - SLC_1998-1999_42_a9
ER  - 
%0 Journal Article
%A George E. Andrews
%A Peter Paule
%T MacMahon's Partition Analysis IV: Hypergeometric Multisums
%J Séminaire lotharingien de combinatoire
%D 1998-1999
%V 42
%U http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a9/
%F SLC_1998-1999_42_a9
George E. Andrews; Peter Paule. MacMahon's Partition Analysis IV: Hypergeometric Multisums. Séminaire lotharingien de combinatoire, Tome 42 (1998-1999). http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a9/