Three Classical Results on Representations of a Number
Séminaire lotharingien de combinatoire, Tome 42 (1998-1999)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We give simple proofs of three theorems on representations of a number by particular quadratic forms, including theorems of Dirichlet and L. Lorenz.

Previous version (it contains a bizarre typo in the topmatter; thanks go to Gaurav Bhatnagar who pointed this out):
@article{SLC_1998-1999_42_a6,
     author = {Michael D. Hirschhorn},
     title = {Three {Classical} {Results} on {Representations} of a {Number}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {42},
     year = {1998-1999},
     url = {http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a6/}
}
TY  - JOUR
AU  - Michael D. Hirschhorn
TI  - Three Classical Results on Representations of a Number
JO  - Séminaire lotharingien de combinatoire
PY  - 1998-1999
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a6/
ID  - SLC_1998-1999_42_a6
ER  - 
%0 Journal Article
%A Michael D. Hirschhorn
%T Three Classical Results on Representations of a Number
%J Séminaire lotharingien de combinatoire
%D 1998-1999
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a6/
%F SLC_1998-1999_42_a6
Michael D. Hirschhorn. Three Classical Results on Representations of a Number. Séminaire lotharingien de combinatoire, Tome 42 (1998-1999). http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a6/