The Triple, Quintuple and Septuple Product Identities Revisited
Séminaire lotharingien de combinatoire, Tome 42 (1998-1999)
This paper takes up again the study of the Jacobi triple and Watson quintuple identities that have been derived combinatorially in several manners in the classical literature. It also contains a proof of the recent Farkas-Kra septuple product identity that makes use only of "manipulatorics" methods.
@article{SLC_1998-1999_42_a15,
author = {D. Foata and G.-N. Han},
title = {The {Triple,} {Quintuple} and {Septuple} {Product} {Identities} {Revisited}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {1998-1999},
volume = {42},
url = {http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a15/}
}
D. Foata; G.-N. Han. The Triple, Quintuple and Septuple Product Identities Revisited. Séminaire lotharingien de combinatoire, Tome 42 (1998-1999). http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a15/