The Triple, Quintuple and Septuple Product Identities Revisited
Séminaire lotharingien de combinatoire, Tome 42 (1998-1999)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

This paper takes up again the study of the Jacobi triple and Watson quintuple identities that have been derived combinatorially in several manners in the classical literature. It also contains a proof of the recent Farkas-Kra septuple product identity that makes use only of "manipulatorics" methods.

@article{SLC_1998-1999_42_a15,
     author = {D. Foata and G.-N. Han},
     title = {The {Triple,} {Quintuple} and {Septuple} {Product} {Identities} {Revisited}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {42},
     year = {1998-1999},
     url = {http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a15/}
}
TY  - JOUR
AU  - D. Foata
AU  - G.-N. Han
TI  - The Triple, Quintuple and Septuple Product Identities Revisited
JO  - Séminaire lotharingien de combinatoire
PY  - 1998-1999
VL  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a15/
ID  - SLC_1998-1999_42_a15
ER  - 
%0 Journal Article
%A D. Foata
%A G.-N. Han
%T The Triple, Quintuple and Septuple Product Identities Revisited
%J Séminaire lotharingien de combinatoire
%D 1998-1999
%V 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a15/
%F SLC_1998-1999_42_a15
D. Foata; G.-N. Han. The Triple, Quintuple and Septuple Product Identities Revisited. Séminaire lotharingien de combinatoire, Tome 42 (1998-1999). http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a15/