The Triple, Quintuple and Septuple Product Identities Revisited
Séminaire lotharingien de combinatoire, Tome 42 (1998-1999)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
This paper takes up again the study of the Jacobi triple and Watson quintuple identities that have been derived combinatorially in several manners in the classical literature. It also contains a proof of the recent Farkas-Kra septuple product identity that makes use only of "manipulatorics" methods.
@article{SLC_1998-1999_42_a15,
author = {D. Foata and G.-N. Han},
title = {The {Triple,} {Quintuple} and {Septuple} {Product} {Identities} {Revisited}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {42},
year = {1998-1999},
url = {http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a15/}
}
D. Foata; G.-N. Han. The Triple, Quintuple and Septuple Product Identities Revisited. Séminaire lotharingien de combinatoire, Tome 42 (1998-1999). http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a15/