Supernomial Coefficients, Bailey's Lemma and Rogers-Ramanujan-Type Identities. A Survey of Results and Open Problems
Séminaire lotharingien de combinatoire, Tome 42 (1998-1999)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
An elementary introduction to the recently introduced A2 Bailey lemma for supernomial coefficients is presented. As illustration, some A2 q-series identities are (re)derived which are natural analogues of the classical (A1) Rogers-Ramanujan identities and their generalizations of Andrews and Bressoud. The intimately related, but unsolved problems of supernomial inversion, An-1 and higher level extensions are also discussed. This yields new results and conjectures involving An-1 basic hypergeometric series, string functions and cylindric partitions.
@article{SLC_1998-1999_42_a14,
author = {S. Ole Warnaar},
title = {Supernomial {Coefficients,} {Bailey's} {Lemma} and {Rogers-Ramanujan-Type} {Identities.} {A} {Survey} of {Results} and {Open} {Problems}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {42},
year = {1998-1999},
url = {http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a14/}
}
TY - JOUR AU - S. Ole Warnaar TI - Supernomial Coefficients, Bailey's Lemma and Rogers-Ramanujan-Type Identities. A Survey of Results and Open Problems JO - Séminaire lotharingien de combinatoire PY - 1998-1999 VL - 42 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a14/ ID - SLC_1998-1999_42_a14 ER -
%0 Journal Article %A S. Ole Warnaar %T Supernomial Coefficients, Bailey's Lemma and Rogers-Ramanujan-Type Identities. A Survey of Results and Open Problems %J Séminaire lotharingien de combinatoire %D 1998-1999 %V 42 %I mathdoc %U http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a14/ %F SLC_1998-1999_42_a14
S. Ole Warnaar. Supernomial Coefficients, Bailey's Lemma and Rogers-Ramanujan-Type Identities. A Survey of Results and Open Problems. Séminaire lotharingien de combinatoire, Tome 42 (1998-1999). http://geodesic.mathdoc.fr/item/SLC_1998-1999_42_a14/