An Algorithm for the Decomposition of Ideals of the Group Ring of a Symmetric Group
Séminaire lotharingien de combinatoire, Tome 39 (1997)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We present an algorithm, which produces a decomposition of left or right ideals of the group ring of a symmetric group into minimal left or right ideals and a corresponding set of primitive pairwise orthogonal idempotents by means of a computer. The algorithm can be used to determine generating idempotents of (left or right) ideals which are given as sums or intersections of (left or right) ideals. We discuss several subjects such as minimal sets of test permutations and the application of fast Fourier transforms which contribute to a good efficiency of the algorithm. Further we show possibilities of use of the algorithm in the computer algebra of tensor expressions.

@article{SLC_1997_39_a4,
     author = {Bernd Fiedler},
     title = {An {Algorithm} for the {Decomposition} of {Ideals} of the {Group} {Ring} of a {Symmetric} {Group}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {39},
     year = {1997},
     url = {http://geodesic.mathdoc.fr/item/SLC_1997_39_a4/}
}
TY  - JOUR
AU  - Bernd Fiedler
TI  - An Algorithm for the Decomposition of Ideals of the Group Ring of a Symmetric Group
JO  - Séminaire lotharingien de combinatoire
PY  - 1997
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1997_39_a4/
ID  - SLC_1997_39_a4
ER  - 
%0 Journal Article
%A Bernd Fiedler
%T An Algorithm for the Decomposition of Ideals of the Group Ring of a Symmetric Group
%J Séminaire lotharingien de combinatoire
%D 1997
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1997_39_a4/
%F SLC_1997_39_a4
Bernd Fiedler. An Algorithm for the Decomposition of Ideals of the Group Ring of a Symmetric Group. Séminaire lotharingien de combinatoire, Tome 39 (1997). http://geodesic.mathdoc.fr/item/SLC_1997_39_a4/