Schubert Functions and the Number of Reduced Words of Permutations
Séminaire lotharingien de combinatoire, Tome 39 (1997)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website


It is well known that a Schur function is the `limit' of a sequence of Schur polynomials in an increasing number of variables, and that Schubert polynomials generalize Schur polynomials. We show that the set of Schubert polynomials can be organized into sequences, whose `limits' we call Schubert functions. A graded version of these Schubert functions can be computed effectively by the application of mixed shift/multiplication operators to the sequence of variables x=(x1,x2,x3,...). This generalizes the Baxter operator approach to graded Schur functions of Thomas, and allows the easy introduction of skew Schubert polynomials and functions.

Since the computation of these operator formulas relies basically on the knowledge of the set of reduced words of permutations, it seems natural that in turn the number of reduced words of a permutation can be determined with the help of Schubert functions: we describe new algebraic formulas and a combinatorial procedure, which allow the effective determination of the number of reduced words for an arbitrary permutation in terms of Schubert polynomials.

@article{SLC_1997_39_a0,
     author = {Rudolf Winkel},
     title = {Schubert {Functions} and the {Number} of {Reduced} {Words} of {Permutations}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {39},
     year = {1997},
     url = {http://geodesic.mathdoc.fr/item/SLC_1997_39_a0/}
}
TY  - JOUR
AU  - Rudolf Winkel
TI  - Schubert Functions and the Number of Reduced Words of Permutations
JO  - Séminaire lotharingien de combinatoire
PY  - 1997
VL  - 39
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1997_39_a0/
ID  - SLC_1997_39_a0
ER  - 
%0 Journal Article
%A Rudolf Winkel
%T Schubert Functions and the Number of Reduced Words of Permutations
%J Séminaire lotharingien de combinatoire
%D 1997
%V 39
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1997_39_a0/
%F SLC_1997_39_a0
Rudolf Winkel. Schubert Functions and the Number of Reduced Words of Permutations. Séminaire lotharingien de combinatoire, Tome 39 (1997). http://geodesic.mathdoc.fr/item/SLC_1997_39_a0/