An extreme point theorem for ordered polymatroids on chain orders
Séminaire lotharingien de combinatoire, Tome 36 (1996)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We consider ordered polymatroids as a generalization of polymatroids and extend the extreme point characterization of polymatroids by the greedy algorithm to the ordered case.
It is proved that a feasible point of an ordered polymatroid is a vertex iff it is a greedy-vector with respect to an appropriate primal greedy-procedure.
It is proved that a feasible point of an ordered polymatroid is a vertex iff it is a greedy-vector with respect to an appropriate primal greedy-procedure.
@article{SLC_1996_36_a5,
author = {Ulrich Kr\"uger},
title = {An extreme point theorem for ordered polymatroids on chain orders},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {36},
year = {1996},
url = {http://geodesic.mathdoc.fr/item/SLC_1996_36_a5/}
}
Ulrich Krüger. An extreme point theorem for ordered polymatroids on chain orders. Séminaire lotharingien de combinatoire, Tome 36 (1996). http://geodesic.mathdoc.fr/item/SLC_1996_36_a5/