An extreme point theorem for ordered polymatroids on chain orders
Séminaire lotharingien de combinatoire, Tome 36 (1996)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
We consider ordered polymatroids as a generalization of polymatroids and extend the extreme point characterization of polymatroids by the greedy algorithm to the ordered case.
It is proved that a feasible point of an ordered polymatroid is a vertex iff it is a greedy-vector with respect to an appropriate primal greedy-procedure.
It is proved that a feasible point of an ordered polymatroid is a vertex iff it is a greedy-vector with respect to an appropriate primal greedy-procedure.
@article{SLC_1996_36_a5,
author = {Ulrich Kr\"uger},
title = {An extreme point theorem for ordered polymatroids on chain orders},
journal = {S\'eminaire lotharingien de combinatoire},
year = {1996},
volume = {36},
url = {http://geodesic.mathdoc.fr/item/SLC_1996_36_a5/}
}
Ulrich Krüger. An extreme point theorem for ordered polymatroids on chain orders. Séminaire lotharingien de combinatoire, Tome 36 (1996). http://geodesic.mathdoc.fr/item/SLC_1996_36_a5/