An extreme point theorem for ordered polymatroids on chain orders
Séminaire lotharingien de combinatoire, Tome 36 (1996)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We consider ordered polymatroids as a generalization of polymatroids and extend the extreme point characterization of polymatroids by the greedy algorithm to the ordered case.
It is proved that a feasible point of an ordered polymatroid is a vertex iff it is a greedy-vector with respect to an appropriate primal greedy-procedure.

@article{SLC_1996_36_a5,
     author = {Ulrich Kr\"uger},
     title = {An extreme point theorem for ordered polymatroids on chain orders},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {36},
     year = {1996},
     url = {http://geodesic.mathdoc.fr/item/SLC_1996_36_a5/}
}
TY  - JOUR
AU  - Ulrich Krüger
TI  - An extreme point theorem for ordered polymatroids on chain orders
JO  - Séminaire lotharingien de combinatoire
PY  - 1996
VL  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1996_36_a5/
ID  - SLC_1996_36_a5
ER  - 
%0 Journal Article
%A Ulrich Krüger
%T An extreme point theorem for ordered polymatroids on chain orders
%J Séminaire lotharingien de combinatoire
%D 1996
%V 36
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1996_36_a5/
%F SLC_1996_36_a5
Ulrich Krüger. An extreme point theorem for ordered polymatroids on chain orders. Séminaire lotharingien de combinatoire, Tome 36 (1996). http://geodesic.mathdoc.fr/item/SLC_1996_36_a5/