An extreme point theorem for ordered polymatroids on chain orders
Séminaire lotharingien de combinatoire, Tome 36 (1996) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

We consider ordered polymatroids as a generalization of polymatroids and extend the extreme point characterization of polymatroids by the greedy algorithm to the ordered case.
It is proved that a feasible point of an ordered polymatroid is a vertex iff it is a greedy-vector with respect to an appropriate primal greedy-procedure.

@article{SLC_1996_36_a5,
     author = {Ulrich Kr\"uger},
     title = {An extreme point theorem for ordered polymatroids on chain orders},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {1996},
     volume = {36},
     url = {http://geodesic.mathdoc.fr/item/SLC_1996_36_a5/}
}
TY  - JOUR
AU  - Ulrich Krüger
TI  - An extreme point theorem for ordered polymatroids on chain orders
JO  - Séminaire lotharingien de combinatoire
PY  - 1996
VL  - 36
UR  - http://geodesic.mathdoc.fr/item/SLC_1996_36_a5/
ID  - SLC_1996_36_a5
ER  - 
%0 Journal Article
%A Ulrich Krüger
%T An extreme point theorem for ordered polymatroids on chain orders
%J Séminaire lotharingien de combinatoire
%D 1996
%V 36
%U http://geodesic.mathdoc.fr/item/SLC_1996_36_a5/
%F SLC_1996_36_a5
Ulrich Krüger. An extreme point theorem for ordered polymatroids on chain orders. Séminaire lotharingien de combinatoire, Tome 36 (1996). http://geodesic.mathdoc.fr/item/SLC_1996_36_a5/