The simple 7-(33,8,10)-Designs with Automorphism Group P-Gamma-L(2,32)
Séminaire lotharingien de combinatoire, Tome 35 (1995)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Lattice basis reduction in combination with an efficient backtracking algorithm is used to find all (4996426) simple 7-(33,8,10) designs with automorphism group P-Gamma-L(2,32). The paper contains a short description of the algorithm.

@article{SLC_1995_35_a8,
     author = {Alfred Wassermann},
     title = {The simple {7-(33,8,10)-Designs} with {Automorphism} {Group} {P-Gamma-L(2,32)}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {35},
     year = {1995},
     url = {http://geodesic.mathdoc.fr/item/SLC_1995_35_a8/}
}
TY  - JOUR
AU  - Alfred Wassermann
TI  - The simple 7-(33,8,10)-Designs with Automorphism Group P-Gamma-L(2,32)
JO  - Séminaire lotharingien de combinatoire
PY  - 1995
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1995_35_a8/
ID  - SLC_1995_35_a8
ER  - 
%0 Journal Article
%A Alfred Wassermann
%T The simple 7-(33,8,10)-Designs with Automorphism Group P-Gamma-L(2,32)
%J Séminaire lotharingien de combinatoire
%D 1995
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1995_35_a8/
%F SLC_1995_35_a8
Alfred Wassermann. The simple 7-(33,8,10)-Designs with Automorphism Group P-Gamma-L(2,32). Séminaire lotharingien de combinatoire, Tome 35 (1995). http://geodesic.mathdoc.fr/item/SLC_1995_35_a8/