Counting nonintersecting lattice paths with turns
Séminaire lotharingien de combinatoire, Tome 34 (1995)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

We derive enumeration formulas for families of nonintersecting lattice paths with given starting and end points and a given total number of North-East turns. These formulas are important for the computation of Hilbert series for determinantal and Pfaffian rings.

Comment by Martin Rubey

Martin Rubey points out that the argument in the proof of Theorem 4 on pp. 11/12 that a family of two-rowed arrays with associated permutation not the identity permutation must contain a crossing point contains an error: the inequality A(\si(i+1))1 -1= A(\si(i))1 on page 12 is not true in general. He provides the following fix:
@article{SLC_1995_34_a8,
     author = {Christian Krattenthaler},
     title = {Counting nonintersecting lattice paths with turns},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {1995},
     volume = {34},
     url = {http://geodesic.mathdoc.fr/item/SLC_1995_34_a8/}
}
TY  - JOUR
AU  - Christian Krattenthaler
TI  - Counting nonintersecting lattice paths with turns
JO  - Séminaire lotharingien de combinatoire
PY  - 1995
VL  - 34
UR  - http://geodesic.mathdoc.fr/item/SLC_1995_34_a8/
ID  - SLC_1995_34_a8
ER  - 
%0 Journal Article
%A Christian Krattenthaler
%T Counting nonintersecting lattice paths with turns
%J Séminaire lotharingien de combinatoire
%D 1995
%V 34
%U http://geodesic.mathdoc.fr/item/SLC_1995_34_a8/
%F SLC_1995_34_a8
Christian Krattenthaler. Counting nonintersecting lattice paths with turns. Séminaire lotharingien de combinatoire, Tome 34 (1995). http://geodesic.mathdoc.fr/item/SLC_1995_34_a8/