Constructing Irreducible Representations of Weyl Groups
Séminaire lotharingien de combinatoire, Tome 34 (1995)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We describe a construction of irreducible representations of Weyl groups based on a remarkably simple procedure given by I. G. Macdonald. For a given Weyl group W with root system R, each subsystem S of R gives rise to an irreducible representation of W. In general, however, not all the irreducible representations can be realised in this way. We show that other special subsets of R lead to representations unobtainable via the subsystem approach. The focus of this work is to determine explicitly Macdonald's representations and various computational techniques are given for finding generating sets and bases for the irreducible W-modules produced by the construction. To illustrate the success of these techniques, we enumerate examples in the Weyl group of type E6.

@article{SLC_1995_34_a3,
     author = {Lee Hawkins},
     title = {Constructing {Irreducible} {Representations} of {Weyl} {Groups}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {34},
     year = {1995},
     url = {http://geodesic.mathdoc.fr/item/SLC_1995_34_a3/}
}
TY  - JOUR
AU  - Lee Hawkins
TI  - Constructing Irreducible Representations of Weyl Groups
JO  - Séminaire lotharingien de combinatoire
PY  - 1995
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1995_34_a3/
ID  - SLC_1995_34_a3
ER  - 
%0 Journal Article
%A Lee Hawkins
%T Constructing Irreducible Representations of Weyl Groups
%J Séminaire lotharingien de combinatoire
%D 1995
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1995_34_a3/
%F SLC_1995_34_a3
Lee Hawkins. Constructing Irreducible Representations of Weyl Groups. Séminaire lotharingien de combinatoire, Tome 34 (1995). http://geodesic.mathdoc.fr/item/SLC_1995_34_a3/