Permutations de Baxter
Séminaire lotharingien de combinatoire, Tome 33 (1994) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

Chung, Graham, Hoggatt and Kleiman have given an explicit formula for the number of Baxter permutations on [n]. Viennot has then given a combinatorial proof of this formula, showing this sum corresponds to the distribution of these permutations according to their number of rises. Cori, Dulucq and Viennot, by making a correspondence between two families of planar maps, have shown that the number of alternating Baxter permutations on [2n+d] is the (n+d)-th Catalan number. We establish a new one-to-one correspondence between the Baxter permutations and three nonintersecting paths, which unifies the previous approaches. Moreover, we obtain more precise results for the enumeration of (alternating or not) Baxter permutations according to various parameters. This provides a combinatorial interpretation of Mallows's formula. The following versions are available:
@article{SLC_1994_33_a2,
     author = {S. Dulucq and O. Guibert},
     title = {Permutations de {Baxter}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {1994},
     volume = {33},
     url = {http://geodesic.mathdoc.fr/item/SLC_1994_33_a2/}
}
TY  - JOUR
AU  - S. Dulucq
AU  - O. Guibert
TI  - Permutations de Baxter
JO  - Séminaire lotharingien de combinatoire
PY  - 1994
VL  - 33
UR  - http://geodesic.mathdoc.fr/item/SLC_1994_33_a2/
ID  - SLC_1994_33_a2
ER  - 
%0 Journal Article
%A S. Dulucq
%A O. Guibert
%T Permutations de Baxter
%J Séminaire lotharingien de combinatoire
%D 1994
%V 33
%U http://geodesic.mathdoc.fr/item/SLC_1994_33_a2/
%F SLC_1994_33_a2
S. Dulucq; O. Guibert. Permutations de Baxter. Séminaire lotharingien de combinatoire, Tome 33 (1994). http://geodesic.mathdoc.fr/item/SLC_1994_33_a2/