Distribution de l'indice majeur réduit sur les dérangements
    
    
  
  
  
      
      
      
        
Séminaire lotharingien de combinatoire, Tome 32 (1994)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
            
              The number of derangements of n objects, denoted by d(n), satisfies the recurrence relation : d(n)=nd(n-1)+1 or nd(n-1)-1, depending on whether n is even or odd. We have proved in a previous paper how a combinatorial model different from the usual derangement model provided a simple proof of the forementioned recurrence. This model has been further exploited and embedded in the context of symmetric functions. It is also possible to obtain explicit formulas for the q-derangements and also to study the reduction of the mahonian statistics modulo n. In this paper we show how the notion of reduced major index yields a direct interpretation of the above formula. 
        
      
@article{SLC_1994_32_a0,
     author = {Jacques D\'esarm\'enien},
     title = {Distribution de l'indice majeur r\'eduit sur les d\'erangements},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {32},
     year = {1994},
     url = {http://geodesic.mathdoc.fr/item/SLC_1994_32_a0/}
}
                      
                      
                    Jacques Désarménien. Distribution de l'indice majeur réduit sur les dérangements. Séminaire lotharingien de combinatoire, Tome 32 (1994). http://geodesic.mathdoc.fr/item/SLC_1994_32_a0/