Distribution de l'indice majeur réduit sur les dérangements
Séminaire lotharingien de combinatoire, Tome 32 (1994)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
The number of derangements of n objects, denoted by d(n), satisfies the recurrence relation : d(n)=nd(n-1)+1 or nd(n-1)-1, depending on whether n is even or odd. We have proved in a previous paper how a combinatorial model different from the usual derangement model provided a simple proof of the forementioned recurrence. This model has been further exploited and embedded in the context of symmetric functions. It is also possible to obtain explicit formulas for the q-derangements and also to study the reduction of the mahonian statistics modulo n. In this paper we show how the notion of reduced major index yields a direct interpretation of the above formula.
@article{SLC_1994_32_a0,
author = {Jacques D\'esarm\'enien},
title = {Distribution de l'indice majeur r\'eduit sur les d\'erangements},
journal = {S\'eminaire lotharingien de combinatoire},
year = {1994},
volume = {32},
url = {http://geodesic.mathdoc.fr/item/SLC_1994_32_a0/}
}
Jacques Désarménien. Distribution de l'indice majeur réduit sur les dérangements. Séminaire lotharingien de combinatoire, Tome 32 (1994). http://geodesic.mathdoc.fr/item/SLC_1994_32_a0/