Conservation of the Integrality of Certain Quotients by Iterated Substitutions of Lucas Numbers
Séminaire lotharingien de combinatoire, Tome 31 (1993)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
If we replace k by a Lucas number, (uk-vk)/(u-v), in certain integral quotients such as the binomial coefficients, the quotient remains integral. We show that this substitution may be repeated indefinitely, while preserving the integrality, for a very large class of quotients. The following versions are available:
@article{SLC_1993_31_a7,
author = {Pierre-Andr\'e Picon},
title = {Conservation of the {Integrality} of {Certain} {Quotients} by {Iterated} {Substitutions} of {Lucas} {Numbers}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {31},
year = {1993},
url = {http://geodesic.mathdoc.fr/item/SLC_1993_31_a7/}
}
Pierre-André Picon. Conservation of the Integrality of Certain Quotients by Iterated Substitutions of Lucas Numbers. Séminaire lotharingien de combinatoire, Tome 31 (1993). http://geodesic.mathdoc.fr/item/SLC_1993_31_a7/