Sur une extension des nombres d'Euler et les records des permutations alternantes
Séminaire lotharingien de combinatoire, Tome 30 (1993)
We study the sequence of polynomials Cn(x,y) defined through the recurrence C0(x,y)=1, Cn(x,y)=x(y+1)Cn-1(x+2,y+2)-xyCn-1(x,y), which turns out to be an extension of Euler numbers. We give a combinatorial interpretation of these numbers in terms of down-up permutations with respect to the numbers of even and odd upper records, and a continued fraction expansion for their ordinary generating function.
@article{SLC_1993_30_a5,
author = {Arthur Randrianarivony and Jiang Zeng},
title = {Sur une extension des nombres {d'Euler} et les records des permutations alternantes},
journal = {S\'eminaire lotharingien de combinatoire},
year = {1993},
volume = {30},
url = {http://geodesic.mathdoc.fr/item/SLC_1993_30_a5/}
}
Arthur Randrianarivony; Jiang Zeng. Sur une extension des nombres d'Euler et les records des permutations alternantes. Séminaire lotharingien de combinatoire, Tome 30 (1993). http://geodesic.mathdoc.fr/item/SLC_1993_30_a5/