Fibonacci Numbers and Words
Séminaire lotharingien de combinatoire, Tome 30 (1993)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Let Φ be the golden ratio (51/2+1)/2, fn the n-th Fibonacci finite word and f the Fibonacci infinite word. Let r be a rational number greater than (2+Φ)/2 and u a nonempty word. If ur is a factor of f, then there exists n≥1 such that u is a conjugate of fn and, moreover, each occurrence of ur is contained in a maximal one of (fn)s for some s in [2, 2 + Φ). Several known results on the Fibonacci infinite word follow from this.
@article{SLC_1993_30_a10,
author = {Giuseppe Pirillo},
title = {Fibonacci {Numbers} and {Words}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {30},
year = {1993},
url = {http://geodesic.mathdoc.fr/item/SLC_1993_30_a10/}
}
Giuseppe Pirillo. Fibonacci Numbers and Words. Séminaire lotharingien de combinatoire, Tome 30 (1993). http://geodesic.mathdoc.fr/item/SLC_1993_30_a10/