Combinatorial Aspects of an Exact Sequence That Is Related to a Graph
Séminaire lotharingien de combinatoire, Tome 29 (1992)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
The five problems of counting component colorings, vertex colorings, arc colorings, cocycles, and switching equivalence classes of a graph with respect to a finite field up to isomorphism are related by an exact sequence that stems from a coboundary operator. This cohomology is presented, and counting formulas are given for each of the five problems.
Siemens AG, München
@article{SLC_1992_29_a5,
author = {M. Hofmeister},
title = {Combinatorial {Aspects} of an {Exact} {Sequence} {That} {Is} {Related} to a {Graph}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {1992},
volume = {29},
url = {http://geodesic.mathdoc.fr/item/SLC_1992_29_a5/}
}
M. Hofmeister. Combinatorial Aspects of an Exact Sequence That Is Related to a Graph. Séminaire lotharingien de combinatoire, Tome 29 (1992). http://geodesic.mathdoc.fr/item/SLC_1992_29_a5/