Combinatorial Aspects of an Exact Sequence That Is Related to a Graph
Séminaire lotharingien de combinatoire, Tome 29 (1992) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

The five problems of counting component colorings, vertex colorings, arc colorings, cocycles, and switching equivalence classes of a graph with respect to a finite field up to isomorphism are related by an exact sequence that stems from a coboundary operator. This cohomology is presented, and counting formulas are given for each of the five problems.

Siemens AG, München
@article{SLC_1992_29_a5,
     author = {M. Hofmeister},
     title = {Combinatorial {Aspects} of an {Exact} {Sequence} {That} {Is} {Related} to a {Graph}},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {1992},
     volume = {29},
     url = {http://geodesic.mathdoc.fr/item/SLC_1992_29_a5/}
}
TY  - JOUR
AU  - M. Hofmeister
TI  - Combinatorial Aspects of an Exact Sequence That Is Related to a Graph
JO  - Séminaire lotharingien de combinatoire
PY  - 1992
VL  - 29
UR  - http://geodesic.mathdoc.fr/item/SLC_1992_29_a5/
ID  - SLC_1992_29_a5
ER  - 
%0 Journal Article
%A M. Hofmeister
%T Combinatorial Aspects of an Exact Sequence That Is Related to a Graph
%J Séminaire lotharingien de combinatoire
%D 1992
%V 29
%U http://geodesic.mathdoc.fr/item/SLC_1992_29_a5/
%F SLC_1992_29_a5
M. Hofmeister. Combinatorial Aspects of an Exact Sequence That Is Related to a Graph. Séminaire lotharingien de combinatoire, Tome 29 (1992). http://geodesic.mathdoc.fr/item/SLC_1992_29_a5/