Specializations of Generalized Laguerre Polynomials
Séminaire lotharingien de combinatoire, Tome 28 (1992)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Three specializations of a set of orthogonal polynomials with "8 different q's" are given. The polynomials are identified as q-analogues of Laguerre polynomials, and the combinatorial interpreation of the moments give infinitely many new Mahonian statistics on permutations.

The paper has been finally published as a joint paper with Rodica Simion under the same title in SIAM J. Math. Anal. 25 (1994), 712-719.

@article{SLC_1992_28_a7,
     author = {Dennis Stanton},
     title = {Specializations of {Generalized} {Laguerre} {Polynomials}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {28},
     year = {1992},
     url = {http://geodesic.mathdoc.fr/item/SLC_1992_28_a7/}
}
TY  - JOUR
AU  - Dennis Stanton
TI  - Specializations of Generalized Laguerre Polynomials
JO  - Séminaire lotharingien de combinatoire
PY  - 1992
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1992_28_a7/
ID  - SLC_1992_28_a7
ER  - 
%0 Journal Article
%A Dennis Stanton
%T Specializations of Generalized Laguerre Polynomials
%J Séminaire lotharingien de combinatoire
%D 1992
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1992_28_a7/
%F SLC_1992_28_a7
Dennis Stanton. Specializations of Generalized Laguerre Polynomials. Séminaire lotharingien de combinatoire, Tome 28 (1992). http://geodesic.mathdoc.fr/item/SLC_1992_28_a7/