On the Integrality of the Witt Polynomials
Séminaire lotharingien de combinatoire, Tome 28 (1992)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
Let rings denote the category of commutative rings with unity elements. Many functors F from rings to rings have the following property: char A=p implies that char F(A)=p. We construct a functor W G: rings -> rings, given a profinite group G. If G is the cyclic group with p elements, then W C p has the property that if char A=p, then char W C p(A) is different from p. We provide several additional results on properties of this functor, and study the functor for various groups G, in particular for the profinite completion of the infinite cyclic group.
@article{SLC_1992_28_a2,
author = {Andreas Dress and Christian Siebeneicher},
title = {On the {Integrality} of the {Witt} {Polynomials}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {28},
year = {1992},
url = {http://geodesic.mathdoc.fr/item/SLC_1992_28_a2/}
}
Andreas Dress; Christian Siebeneicher. On the Integrality of the Witt Polynomials. Séminaire lotharingien de combinatoire, Tome 28 (1992). http://geodesic.mathdoc.fr/item/SLC_1992_28_a2/