Endomorphisms of Words in a Quiver
Séminaire lotharingien de combinatoire, Tome 26 (1991)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We present a purely combinatorial concept which has been useful in the representation theory of finite dimensional algebras. First we extend the classical concept of a word in an alphabet (as discussed for instance in the book of M. Lothaire) to that of a word in a quiver. Then the endomorphisms of such a word are defined. They form a monoid which provides some information about recurrence and periodicity of the fixed word.

The paper has been finally published under the same title in J. Combin. Theory Ser. A 64 (1993), 216-245.

@article{SLC_1991_26_a7,
     author = {Henning Krause},
     title = {Endomorphisms of {Words} in a {Quiver}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {26},
     year = {1991},
     url = {http://geodesic.mathdoc.fr/item/SLC_1991_26_a7/}
}
TY  - JOUR
AU  - Henning Krause
TI  - Endomorphisms of Words in a Quiver
JO  - Séminaire lotharingien de combinatoire
PY  - 1991
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1991_26_a7/
ID  - SLC_1991_26_a7
ER  - 
%0 Journal Article
%A Henning Krause
%T Endomorphisms of Words in a Quiver
%J Séminaire lotharingien de combinatoire
%D 1991
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1991_26_a7/
%F SLC_1991_26_a7
Henning Krause. Endomorphisms of Words in a Quiver. Séminaire lotharingien de combinatoire, Tome 26 (1991). http://geodesic.mathdoc.fr/item/SLC_1991_26_a7/