An Application of Burnside Rings in Elementary Finite Group Theory
Séminaire lotharingien de combinatoire, Tome 25 (1990)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
A canonical map from the Burnside ring of a finite cyclic group C into the Burnside ring of any finite group G of the same order is exhibited and it is shown that many results from elementary finite group theory, in particular those claiming certain congruence relations, are simple consequences of the existence of this map. In addition, it is shown that this map defines an isomorphism from the Burnside ring of C onto the subring of the Burnside ring of G, consisting of those virtual G-sets x which have the same number of invariants for every two subgroups U and V of G having the same order, if and only if G is nilpotent. Finally, a rather natural extension to profinite groups is indicated.
The paper was not in final form, its final form has been published 1992 under the same title in: Advances of Mathematics, Vol. 91, pp. 27 - 44.
@article{SLC_1990_25_a3,
author = {Andreas W. M. Dress and Christian Siebeneicher and Tomoyuki Yoshida},
title = {An {Application} of {Burnside} {Rings} in {Elementary} {Finite} {Group} {Theory}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {25},
year = {1990},
url = {http://geodesic.mathdoc.fr/item/SLC_1990_25_a3/}
}
TY - JOUR AU - Andreas W. M. Dress AU - Christian Siebeneicher AU - Tomoyuki Yoshida TI - An Application of Burnside Rings in Elementary Finite Group Theory JO - Séminaire lotharingien de combinatoire PY - 1990 VL - 25 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_1990_25_a3/ ID - SLC_1990_25_a3 ER -
Andreas W. M. Dress; Christian Siebeneicher; Tomoyuki Yoshida. An Application of Burnside Rings in Elementary Finite Group Theory. Séminaire lotharingien de combinatoire, Tome 25 (1990). http://geodesic.mathdoc.fr/item/SLC_1990_25_a3/