On Lattice Path Counting by Major and Descents
Séminaire lotharingien de combinatoire, Tome 25 (1990)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

n-dimensional lattice paths which do not touch the hyperplanes x(i)-x(i+1)=-1, i=1,2,...,(n-1) and x(n)-x(1)=-1-K are enumerated by MacMahon's major index and variations of the major index. A formula involving determinants is obtained. For n=2 we also present a formula for counting these lattice paths simultaneously by major and descents.

This paper is a summary of the articles that appeared in:
Europ. J. Combin. 14 (1993), 43-51,
Discrete Math. 126 (1994), 195-208.

@article{SLC_1990_25_a1,
     author = {Christian Krattenthaler and S.G. Mohanty},
     title = {On {Lattice} {Path} {Counting} by {Major} and {Descents}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {25},
     year = {1990},
     url = {http://geodesic.mathdoc.fr/item/SLC_1990_25_a1/}
}
TY  - JOUR
AU  - Christian Krattenthaler
AU  - S.G. Mohanty
TI  - On Lattice Path Counting by Major and Descents
JO  - Séminaire lotharingien de combinatoire
PY  - 1990
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1990_25_a1/
ID  - SLC_1990_25_a1
ER  - 
%0 Journal Article
%A Christian Krattenthaler
%A S.G. Mohanty
%T On Lattice Path Counting by Major and Descents
%J Séminaire lotharingien de combinatoire
%D 1990
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1990_25_a1/
%F SLC_1990_25_a1
Christian Krattenthaler; S.G. Mohanty. On Lattice Path Counting by Major and Descents. Séminaire lotharingien de combinatoire, Tome 25 (1990). http://geodesic.mathdoc.fr/item/SLC_1990_25_a1/