The q-Stirling Numbers, Continued Fractions and the q-Charlier and q-Laguerre Polynomials
Séminaire lotharingien de combinatoire, Tome 24 (1990)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We give a simple proof of the continued fraction expansions of the ordinary generating functions of the q-Stirling numbers of both kinds. By generalizing the method of Touchard and milne we obtain the explicit formulas and measure of one set of the polynomials whose moments are the q-Stirling numbers.
The paper has been finally published under the same title in J. Comput. Appl. Math. 57 (1995), 413-424.
@article{SLC_1990_24_a4,
author = {Jiang Zeng},
title = {The {q-Stirling} {Numbers,} {Continued} {Fractions} and the {q-Charlier} and {q-Laguerre} {Polynomials}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {24},
year = {1990},
url = {http://geodesic.mathdoc.fr/item/SLC_1990_24_a4/}
}
Jiang Zeng. The q-Stirling Numbers, Continued Fractions and the q-Charlier and q-Laguerre Polynomials. Séminaire lotharingien de combinatoire, Tome 24 (1990). http://geodesic.mathdoc.fr/item/SLC_1990_24_a4/