The q-Stirling Numbers, Continued Fractions and the q-Charlier and q-Laguerre Polynomials
Séminaire lotharingien de combinatoire, Tome 24 (1990)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We give a simple proof of the continued fraction expansions of the ordinary generating functions of the q-Stirling numbers of both kinds. By generalizing the method of Touchard and milne we obtain the explicit formulas and measure of one set of the polynomials whose moments are the q-Stirling numbers.

The paper has been finally published under the same title in J. Comput. Appl. Math. 57 (1995), 413-424.

@article{SLC_1990_24_a4,
     author = {Jiang Zeng},
     title = {The {q-Stirling} {Numbers,} {Continued} {Fractions} and the {q-Charlier} and {q-Laguerre} {Polynomials}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {24},
     year = {1990},
     url = {http://geodesic.mathdoc.fr/item/SLC_1990_24_a4/}
}
TY  - JOUR
AU  - Jiang Zeng
TI  - The q-Stirling Numbers, Continued Fractions and the q-Charlier and q-Laguerre Polynomials
JO  - Séminaire lotharingien de combinatoire
PY  - 1990
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1990_24_a4/
ID  - SLC_1990_24_a4
ER  - 
%0 Journal Article
%A Jiang Zeng
%T The q-Stirling Numbers, Continued Fractions and the q-Charlier and q-Laguerre Polynomials
%J Séminaire lotharingien de combinatoire
%D 1990
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1990_24_a4/
%F SLC_1990_24_a4
Jiang Zeng. The q-Stirling Numbers, Continued Fractions and the q-Charlier and q-Laguerre Polynomials. Séminaire lotharingien de combinatoire, Tome 24 (1990). http://geodesic.mathdoc.fr/item/SLC_1990_24_a4/