Combinatorial Proofs of Capelli's and Turnbull's Identities from Classical Invariant Theory
Séminaire lotharingien de combinatoire, Tome 23 (1990)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
In this paper we give short combinatorial proofs of Capelli's and Turnbull's identities, and raise the hope that someone else will use our approach to prove the new Howe-Umeda-Kostant-Sahi identity.
The paper has been finally published as:
- The Electronic Journal of Combinatoics 1 (1994), Art. #R1, 10 pp.
@article{SLC_1990_23_a1,
author = {Dominique Foata and Doron Zeilberger},
title = {Combinatorial {Proofs} of {Capelli's} and {Turnbull's} {Identities} from {Classical} {Invariant} {Theory}},
journal = {S\'eminaire lotharingien de combinatoire},
year = {1990},
volume = {23},
url = {http://geodesic.mathdoc.fr/item/SLC_1990_23_a1/}
}
Dominique Foata; Doron Zeilberger. Combinatorial Proofs of Capelli's and Turnbull's Identities from Classical Invariant Theory. Séminaire lotharingien de combinatoire, Tome 23 (1990). http://geodesic.mathdoc.fr/item/SLC_1990_23_a1/