Combinatorial Proofs of Capelli's and Turnbull's Identities from Classical Invariant Theory
Séminaire lotharingien de combinatoire, Tome 23 (1990)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
In this paper we give short combinatorial proofs of Capelli's and Turnbull's identities, and raise the hope that someone else will use our approach to prove the new Howe-Umeda-Kostant-Sahi identity.
The paper has been finally published as:
- The Electronic Journal of Combinatoics 1 (1994), Art. #R1, 10 pp.
@article{SLC_1990_23_a1,
author = {Dominique Foata and Doron Zeilberger},
title = {Combinatorial {Proofs} of {Capelli's} and {Turnbull's} {Identities} from {Classical} {Invariant} {Theory}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {23},
year = {1990},
url = {http://geodesic.mathdoc.fr/item/SLC_1990_23_a1/}
}
TY - JOUR AU - Dominique Foata AU - Doron Zeilberger TI - Combinatorial Proofs of Capelli's and Turnbull's Identities from Classical Invariant Theory JO - Séminaire lotharingien de combinatoire PY - 1990 VL - 23 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_1990_23_a1/ ID - SLC_1990_23_a1 ER -
Dominique Foata; Doron Zeilberger. Combinatorial Proofs of Capelli's and Turnbull's Identities from Classical Invariant Theory. Séminaire lotharingien de combinatoire, Tome 23 (1990). http://geodesic.mathdoc.fr/item/SLC_1990_23_a1/