Galois Correspondences in Category Theory
Séminaire lotharingien de combinatoire, Tome 22 (1989)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

This title has been chosen because of shortness, but the real one is: "Generalised Galois cormespondences in (generalised) category theory". We shall try to explain in what sense those generalisations have to be understood and what are our motivations for introducing them. At the level of those words of introduction, it is enough to say that a Galois correspondence being a pair of mappings between ordered sets having to satisfy certain conditions, we generalise it by replacing the mappings by difunctional relations and ordered sets by preordered sets or at a later stage by categories or actegories.

@article{SLC_1989_22_a13,
     author = {Jacques Riguet},
     title = {Galois {Correspondences} in {Category} {Theory}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {22},
     year = {1989},
     url = {http://geodesic.mathdoc.fr/item/SLC_1989_22_a13/}
}
TY  - JOUR
AU  - Jacques Riguet
TI  - Galois Correspondences in Category Theory
JO  - Séminaire lotharingien de combinatoire
PY  - 1989
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1989_22_a13/
ID  - SLC_1989_22_a13
ER  - 
%0 Journal Article
%A Jacques Riguet
%T Galois Correspondences in Category Theory
%J Séminaire lotharingien de combinatoire
%D 1989
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1989_22_a13/
%F SLC_1989_22_a13
Jacques Riguet. Galois Correspondences in Category Theory. Séminaire lotharingien de combinatoire, Tome 22 (1989). http://geodesic.mathdoc.fr/item/SLC_1989_22_a13/