Su alcune recenti generalizzazioni del teorema di Shirshov
Séminaire lotharingien de combinatoire, Tome 22 (1989)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
A well-known theorem of Shirshov says that every sufficiently long word in a finite alphabet contains either a factor which is 'n-divided' or a factor which is a pth power.
Using the properties of Lyndon words, Reutenauer presented a very elegant proof of this theorem, which, by analogous techniques, Varricchio extended to words that are infinite on the right.
The aim of this work is to give a brief outline of an extension of the theorem of Shirshov to bi-infinite words.
@article{SLC_1989_22_a12,
author = {Giuseppe Pirillo},
title = {Su alcune recenti generalizzazioni del teorema di {Shirshov}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {22},
year = {1989},
url = {http://geodesic.mathdoc.fr/item/SLC_1989_22_a12/}
}
Giuseppe Pirillo. Su alcune recenti generalizzazioni del teorema di Shirshov. Séminaire lotharingien de combinatoire, Tome 22 (1989). http://geodesic.mathdoc.fr/item/SLC_1989_22_a12/