Su alcune recenti generalizzazioni del teorema di Shirshov
Séminaire lotharingien de combinatoire, Tome 22 (1989)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

A well-known theorem of Shirshov says that every sufficiently long word in a finite alphabet contains either a factor which is 'n-divided' or a factor which is a pth power.

Using the properties of Lyndon words, Reutenauer presented a very elegant proof of this theorem, which, by analogous techniques, Varricchio extended to words that are infinite on the right.

The aim of this work is to give a brief outline of an extension of the theorem of Shirshov to bi-infinite words.

@article{SLC_1989_22_a12,
     author = {Giuseppe Pirillo},
     title = {Su alcune recenti generalizzazioni del teorema di {Shirshov}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {22},
     year = {1989},
     url = {http://geodesic.mathdoc.fr/item/SLC_1989_22_a12/}
}
TY  - JOUR
AU  - Giuseppe Pirillo
TI  - Su alcune recenti generalizzazioni del teorema di Shirshov
JO  - Séminaire lotharingien de combinatoire
PY  - 1989
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1989_22_a12/
ID  - SLC_1989_22_a12
ER  - 
%0 Journal Article
%A Giuseppe Pirillo
%T Su alcune recenti generalizzazioni del teorema di Shirshov
%J Séminaire lotharingien de combinatoire
%D 1989
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1989_22_a12/
%F SLC_1989_22_a12
Giuseppe Pirillo. Su alcune recenti generalizzazioni del teorema di Shirshov. Séminaire lotharingien de combinatoire, Tome 22 (1989). http://geodesic.mathdoc.fr/item/SLC_1989_22_a12/