Zur Abzählung periodischer Worte
Séminaire lotharingien de combinatoire, Tome 21 (1989)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We show that the basic bijection \Psi of a diagram which has been introduced in [DS3] (see also [DS2]) to unify the known combinatorial proofs of the so called cyclotomic identity (cf. [DS1,MR1,MR2,VW]) and which provides moreover a setting for bijections concerning primitive necklaces, defined and studied by Viennot [V], de Bruijn and Klarner [dBK], and Gessel [DW], may be viewed as a special instance of a more general bijection defined for arbitrary cyclic sets. Indeed, if this more general bijection is applied to the cyclic set P(A) of periodic functions on the integers with values in the set A, one gets the bijection discussed in [DS2,DS3].

@article{SLC_1989_21_a1,
     author = {Andreas Dress and Christian Siebeneicher},
     title = {Zur {Abz\"ahlung} periodischer {Worte}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {21},
     year = {1989},
     url = {http://geodesic.mathdoc.fr/item/SLC_1989_21_a1/}
}
TY  - JOUR
AU  - Andreas Dress
AU  - Christian Siebeneicher
TI  - Zur Abzählung periodischer Worte
JO  - Séminaire lotharingien de combinatoire
PY  - 1989
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1989_21_a1/
ID  - SLC_1989_21_a1
ER  - 
%0 Journal Article
%A Andreas Dress
%A Christian Siebeneicher
%T Zur Abzählung periodischer Worte
%J Séminaire lotharingien de combinatoire
%D 1989
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1989_21_a1/
%F SLC_1989_21_a1
Andreas Dress; Christian Siebeneicher. Zur Abzählung periodischer Worte. Séminaire lotharingien de combinatoire, Tome 21 (1989). http://geodesic.mathdoc.fr/item/SLC_1989_21_a1/