Littlewood-Richardson without Algorithmically Defined Bijections
Séminaire lotharingien de combinatoire, Tome 20 (1988)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We give an alternative proof of the classical Littlewood-Richardson rule, which is less "tableau-theoretic" than many earlier ones. The best of the earlier proofs have considerable combinatorial explanatory power. The proof below explains only why the product of two Schur functions is what it is. The following versions are available:
@article{SLC_1988_20_a10,
author = {Peter Hoffman},
title = {Littlewood-Richardson without {Algorithmically} {Defined} {Bijections}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {20},
year = {1988},
url = {http://geodesic.mathdoc.fr/item/SLC_1988_20_a10/}
}
Peter Hoffman. Littlewood-Richardson without Algorithmically Defined Bijections. Séminaire lotharingien de combinatoire, Tome 20 (1988). http://geodesic.mathdoc.fr/item/SLC_1988_20_a10/