Littlewood-Richardson without Algorithmically Defined Bijections
Séminaire lotharingien de combinatoire, Tome 20 (1988)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We give an alternative proof of the classical Littlewood-Richardson rule, which is less "tableau-theoretic" than many earlier ones. The best of the earlier proofs have considerable combinatorial explanatory power. The proof below explains only why the product of two Schur functions is what it is. The following versions are available:
@article{SLC_1988_20_a10,
     author = {Peter Hoffman},
     title = {Littlewood-Richardson without {Algorithmically} {Defined} {Bijections}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {20},
     year = {1988},
     url = {http://geodesic.mathdoc.fr/item/SLC_1988_20_a10/}
}
TY  - JOUR
AU  - Peter Hoffman
TI  - Littlewood-Richardson without Algorithmically Defined Bijections
JO  - Séminaire lotharingien de combinatoire
PY  - 1988
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1988_20_a10/
ID  - SLC_1988_20_a10
ER  - 
%0 Journal Article
%A Peter Hoffman
%T Littlewood-Richardson without Algorithmically Defined Bijections
%J Séminaire lotharingien de combinatoire
%D 1988
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1988_20_a10/
%F SLC_1988_20_a10
Peter Hoffman. Littlewood-Richardson without Algorithmically Defined Bijections. Séminaire lotharingien de combinatoire, Tome 20 (1988). http://geodesic.mathdoc.fr/item/SLC_1988_20_a10/