An analogue to Robinson-Schensted correspondence for oscillating tableaux
Séminaire lotharingien de combinatoire, Tome 20 (1988) Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website

Voir la notice de l'acte

We give the hook formula for oscillating tableaux of length n and final shape l, and using a bijective proof we construct an analogue of the Robinson-Schensted correspondence to prove the dimension identity

1.3.5...(2n-1)=\sum_\lambda(fn\lambda)2

related to the irreducible representation of the Brauer algebra of the symplectic group. This correspondence turns out to have most of the ordinary Robinson-Schensted correspondence properties.

The following versions are available:
@article{SLC_1988_20_a1,
     author = {Marie-Pierre Delest and Serge Dulucq and Luc Favreau},
     title = {An analogue to {Robinson-Schensted} correspondence for oscillating tableaux},
     journal = {S\'eminaire lotharingien de combinatoire},
     year = {1988},
     volume = {20},
     url = {http://geodesic.mathdoc.fr/item/SLC_1988_20_a1/}
}
TY  - JOUR
AU  - Marie-Pierre Delest
AU  - Serge Dulucq
AU  - Luc Favreau
TI  - An analogue to Robinson-Schensted correspondence for oscillating tableaux
JO  - Séminaire lotharingien de combinatoire
PY  - 1988
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/SLC_1988_20_a1/
ID  - SLC_1988_20_a1
ER  - 
%0 Journal Article
%A Marie-Pierre Delest
%A Serge Dulucq
%A Luc Favreau
%T An analogue to Robinson-Schensted correspondence for oscillating tableaux
%J Séminaire lotharingien de combinatoire
%D 1988
%V 20
%U http://geodesic.mathdoc.fr/item/SLC_1988_20_a1/
%F SLC_1988_20_a1
Marie-Pierre Delest; Serge Dulucq; Luc Favreau. An analogue to Robinson-Schensted correspondence for oscillating tableaux. Séminaire lotharingien de combinatoire, Tome 20 (1988). http://geodesic.mathdoc.fr/item/SLC_1988_20_a1/