An analogue to Robinson-Schensted correspondence for oscillating tableaux
Séminaire lotharingien de combinatoire, Tome 20 (1988)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

We give the hook formula for oscillating tableaux of length n and final shape l, and using a bijective proof we construct an analogue of the Robinson-Schensted correspondence to prove the dimension identity

1.3.5...(2n-1)=\sum_\lambda(fn\lambda)2

related to the irreducible representation of the Brauer algebra of the symplectic group. This correspondence turns out to have most of the ordinary Robinson-Schensted correspondence properties.

The following versions are available:
@article{SLC_1988_20_a1,
     author = {Marie-Pierre Delest and Serge Dulucq and Luc Favreau},
     title = {An analogue to {Robinson-Schensted} correspondence for oscillating tableaux},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {20},
     year = {1988},
     url = {http://geodesic.mathdoc.fr/item/SLC_1988_20_a1/}
}
TY  - JOUR
AU  - Marie-Pierre Delest
AU  - Serge Dulucq
AU  - Luc Favreau
TI  - An analogue to Robinson-Schensted correspondence for oscillating tableaux
JO  - Séminaire lotharingien de combinatoire
PY  - 1988
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1988_20_a1/
ID  - SLC_1988_20_a1
ER  - 
%0 Journal Article
%A Marie-Pierre Delest
%A Serge Dulucq
%A Luc Favreau
%T An analogue to Robinson-Schensted correspondence for oscillating tableaux
%J Séminaire lotharingien de combinatoire
%D 1988
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1988_20_a1/
%F SLC_1988_20_a1
Marie-Pierre Delest; Serge Dulucq; Luc Favreau. An analogue to Robinson-Schensted correspondence for oscillating tableaux. Séminaire lotharingien de combinatoire, Tome 20 (1988). http://geodesic.mathdoc.fr/item/SLC_1988_20_a1/