An analogue to Robinson-Schensted correspondence for oscillating tableaux
Séminaire lotharingien de combinatoire, Tome 20 (1988)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We give the hook formula for oscillating tableaux of length n and final shape l, and using a bijective proof we construct an analogue of the Robinson-Schensted correspondence to prove the dimension identity
1.3.5...(2n-1)=\sum_\lambda(fn\lambda)2
related to the irreducible representation of the Brauer algebra of the symplectic group. This correspondence turns out to have most of the ordinary Robinson-Schensted correspondence properties.
The following versions are available:@article{SLC_1988_20_a1,
author = {Marie-Pierre Delest and Serge Dulucq and Luc Favreau},
title = {An analogue to {Robinson-Schensted} correspondence for oscillating tableaux},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {20},
year = {1988},
url = {http://geodesic.mathdoc.fr/item/SLC_1988_20_a1/}
}
TY - JOUR AU - Marie-Pierre Delest AU - Serge Dulucq AU - Luc Favreau TI - An analogue to Robinson-Schensted correspondence for oscillating tableaux JO - Séminaire lotharingien de combinatoire PY - 1988 VL - 20 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SLC_1988_20_a1/ ID - SLC_1988_20_a1 ER -
Marie-Pierre Delest; Serge Dulucq; Luc Favreau. An analogue to Robinson-Schensted correspondence for oscillating tableaux. Séminaire lotharingien de combinatoire, Tome 20 (1988). http://geodesic.mathdoc.fr/item/SLC_1988_20_a1/