An analogue to Robinson-Schensted correspondence for oscillating tableaux
Séminaire lotharingien de combinatoire, Tome 20 (1988)
Cet article a éte moissonné depuis la source Séminaire Lotharingien de Combinatoire website
We give the hook formula for oscillating tableaux of length n and final shape l, and using a bijective proof we construct an analogue of the Robinson-Schensted correspondence to prove the dimension identity
1.3.5...(2n-1)=\sum_\lambda(fn\lambda)2
related to the irreducible representation of the Brauer algebra of the symplectic group. This correspondence turns out to have most of the ordinary Robinson-Schensted correspondence properties.
The following versions are available:@article{SLC_1988_20_a1,
author = {Marie-Pierre Delest and Serge Dulucq and Luc Favreau},
title = {An analogue to {Robinson-Schensted} correspondence for oscillating tableaux},
journal = {S\'eminaire lotharingien de combinatoire},
year = {1988},
volume = {20},
url = {http://geodesic.mathdoc.fr/item/SLC_1988_20_a1/}
}
Marie-Pierre Delest; Serge Dulucq; Luc Favreau. An analogue to Robinson-Schensted correspondence for oscillating tableaux. Séminaire lotharingien de combinatoire, Tome 20 (1988). http://geodesic.mathdoc.fr/item/SLC_1988_20_a1/