A New Class of Symmetric Functions
Séminaire lotharingien de combinatoire, Tome 20 (1988)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

The polynomials P\lambda(q,t) whose algebra is discussed in this paper generalize the classical symmetric functions, such as the Jack symmetric functions, the Schur functions, the Hall-Littlewood functions, as well as the usual symmetric functions. The main conjecture is to prove that the entries of the transition matrix for going from those polynomials to (say) the Schur functions are all polynomials in q,t. Queen Mary College, Mile End Road, G.B. London E1 4NS The following versions are available:
@article{SLC_1988_20_a0,
     author = {I.G. Macdonald},
     title = {A {New} {Class} of {Symmetric} {Functions}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {20},
     year = {1988},
     url = {http://geodesic.mathdoc.fr/item/SLC_1988_20_a0/}
}
TY  - JOUR
AU  - I.G. Macdonald
TI  - A New Class of Symmetric Functions
JO  - Séminaire lotharingien de combinatoire
PY  - 1988
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1988_20_a0/
ID  - SLC_1988_20_a0
ER  - 
%0 Journal Article
%A I.G. Macdonald
%T A New Class of Symmetric Functions
%J Séminaire lotharingien de combinatoire
%D 1988
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1988_20_a0/
%F SLC_1988_20_a0
I.G. Macdonald. A New Class of Symmetric Functions. Séminaire lotharingien de combinatoire, Tome 20 (1988). http://geodesic.mathdoc.fr/item/SLC_1988_20_a0/