On the Permanent of Certain Submatrices of Circulant (0,1)-Matrices
Séminaire lotharingien de combinatoire, Tome 19 (1988)

Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website

Let A = In + Ph + Pk, where P represents the permutation (1 2 ... n) and 1 = h k = n-1. We prove that the submatrix of A obtained by deleting the rows and the columns intersecting at three non-zero entries belonging to I, Ph, Pk has positive permanent, except in certain cases that are completely determined.

The topic of this article is partially contained in the paper "On certain generalized circulant matrices," Mathematica Pannonica 14 (2003), 273-281, written jointly with Ernesto Dedó and Alberto Marini. Another article is in preparation.

@article{SLC_1988_19_a8,
     author = {Norma Zagaglia Salvi},
     title = {On the {Permanent} of {Certain} {Submatrices} of {Circulant} {(0,1)-Matrices}},
     journal = {S\'eminaire lotharingien de combinatoire},
     publisher = {mathdoc},
     volume = {19},
     year = {1988},
     url = {http://geodesic.mathdoc.fr/item/SLC_1988_19_a8/}
}
TY  - JOUR
AU  - Norma Zagaglia Salvi
TI  - On the Permanent of Certain Submatrices of Circulant (0,1)-Matrices
JO  - Séminaire lotharingien de combinatoire
PY  - 1988
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SLC_1988_19_a8/
ID  - SLC_1988_19_a8
ER  - 
%0 Journal Article
%A Norma Zagaglia Salvi
%T On the Permanent of Certain Submatrices of Circulant (0,1)-Matrices
%J Séminaire lotharingien de combinatoire
%D 1988
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SLC_1988_19_a8/
%F SLC_1988_19_a8
Norma Zagaglia Salvi. On the Permanent of Certain Submatrices of Circulant (0,1)-Matrices. Séminaire lotharingien de combinatoire, Tome 19 (1988). http://geodesic.mathdoc.fr/item/SLC_1988_19_a8/