On the Existence of a Finite Base for Systems of Equations of Infinite Words
Séminaire lotharingien de combinatoire, Tome 19 (1988)
Voir la notice de l'acte provenant de la source Séminaire Lotharingien de Combinatoire website
We prove that any set of equations on infinite words in a finite number of indeterminates has, over a countably generated free monoid, a finite equivalent subsystem. From this it follows that any language L of finite and infinite words on a finite alphabet A has a test set for morphisms from A\infty to B\infty. In the case of finite words, the result was proved by M. H. Albert and J. Lawrence.
The paper has been finally published under the title "Test sets for languages of infinite words" in Inform. Process. Lett. 29 (1988), 91-95.
@article{SLC_1988_19_a5,
author = {Aldo de Luca},
title = {On the {Existence} of a {Finite} {Base} for {Systems} of {Equations} of {Infinite} {Words}},
journal = {S\'eminaire lotharingien de combinatoire},
publisher = {mathdoc},
volume = {19},
year = {1988},
url = {http://geodesic.mathdoc.fr/item/SLC_1988_19_a5/}
}
Aldo de Luca. On the Existence of a Finite Base for Systems of Equations of Infinite Words. Séminaire lotharingien de combinatoire, Tome 19 (1988). http://geodesic.mathdoc.fr/item/SLC_1988_19_a5/